
9 CHAMPITRE 9: LES POMPES

9.1 Intro

9.1.1 Définitions

Une pompe doit assurer un débit sous pression. Généralement ces pompes sont aspirantes et refoulantes

9.1.2 Qu'est ce qu'une pompe volumétrique?

Les pompes volumétriques ne sont pas influencées par la pression, elles sont montées sur tous les appareils de type DPA.

Une pompe semi – volumétrique n'est pas influencée par la pression jusqu'à un certain point, et après ce point le débit chute nettement.

Une pompe non – volumétrique est fortement influencée par la pression.

9.1.3 Calcul du débit minimum d'une pompe

$$Q = 600 \text{ g / LV}$$
 => $q = QLV / 600$

Quand on veut calculer le débit minimum d'une pompe on considère :

- ★ La plus grande Qté / ha (ex : 300 L/ha)
- ★ La vitesse maximum de travail (ex : 8km/h)
- ★ La longueur de la rampe (ex : 24 m)

Comme c'est le débit minimum $D_{pompe} = D_{rampe}$

Il faut rajouter aussi 5 à 10 L / 100 L de cuve

Donc si c'est une cuve de 1000 L à agitation par retour, on rajoute donc 50 L pour l'agitation.

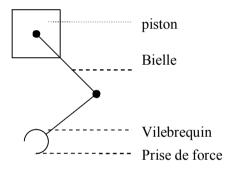
Ainsi 96 + 50 = 146 L/min

★ Si on veut augmenter la longueur de la rampe il faut calculer si la rampe peut supporter cette extension :

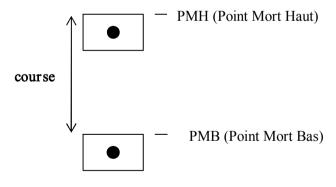
16 m -> 20 m

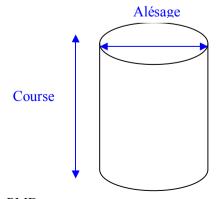
A 16 m: 120 L/min, 7 km/h, 300L/ha

Or q = 300x20x7 / 600 = 70 L/min

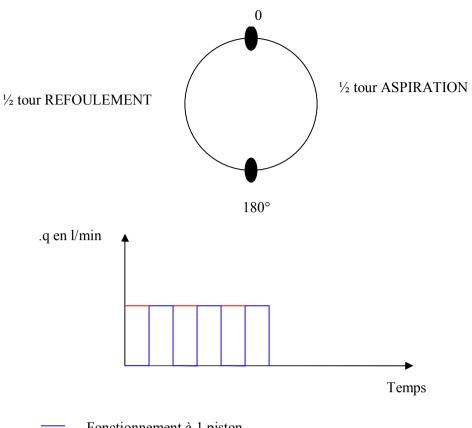

Ainsi la rampe peut supporter l'extension de rampe

★ On peut aussi calculer la vitesse maximum de travail :


V = 120x600 / 300x16


9.2 Pompes à mouvement alternatif

9.2.1 Pompes à piston



La bielle et le vilebrequin transforment le mouvement rotatif de la prise de force en mouvement alternatif du piston.

Cylindré: volume balayé entre PMH et PMB.

Fonctionnement à 1 piston

Fonctionnement à 2 pistons

Il existe des pompes à 1, 2, 3 ou 4 pistons.

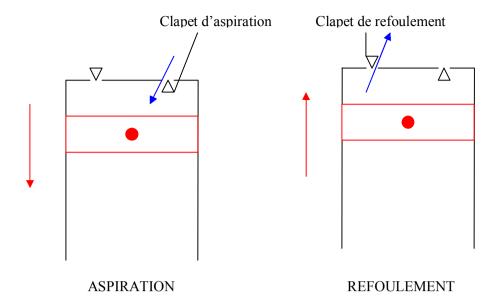
Exercice:

Une pompe à 3 pistons tourne au régime normalisé (540rpm)

Alésage A = 3cm

Course C = 5cm

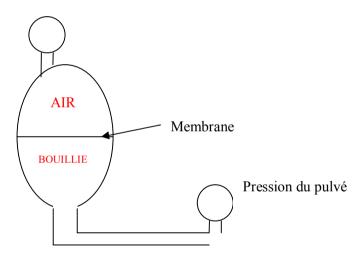
Calculer le débit de la pompe en l/min.


Volume du cylindre :

$$V = \prod R^{2} \times C$$

$$= \prod (1,5)^{2} \times 5$$

$$= 35,34 \text{ cm}^{3}$$


Débit de la pompe =
$$V \times 3 \times 540$$

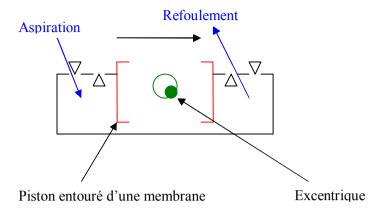
= 57 255,5 cm³/min
= 57, 25 L/min

Ces pompes à mouvement alternatif génèrent toujours des à coups

→ présence d'un amortisseur

Pression d'air

Pour un bon fonctionnement : $P_{air} = P_{pulv\acute{e}}$


Un amortisseur devra être détendu après pulvérisation.

Caractéristiques:

- ♦ Volumétrique : Pour tout P, Q = Constante
- ♦ 50 bars et plus
- jusqu'à 350 L/min

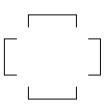
9.2.2 Pompe à piston membrane

AVANTAGES : le piston n'est pas en contact avec les liquides chargés corrosifs (bouillie)

Contrairement aux pompes à piston :

- La course est faible
- L'alésage est grand

Une pompe à piston membrane possède un amortisseur (Pression idem à la pompe à piston)


Il existe des pompes:

• En 2 pistons opposés à 180°

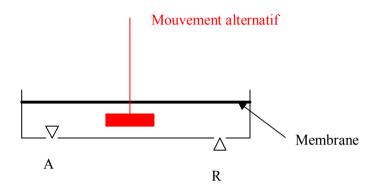
• En 3 pistons opposés à 120°

• En 4 pistons opposés à 90°

Caractéristiques:

- ≈ Volumétrique
- Pression maxi 35 bars
- Débit ≈ débit pompe à piston

AVANTAGES:

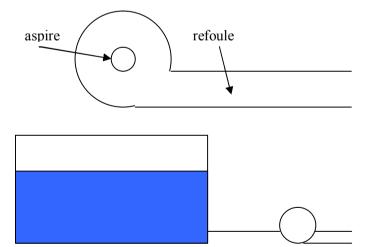

- → Mécanique simple
- → Moins cher
- → Résiste bien aux liquides chargés car le piston est protégé par une membrane.

C'est la pompe la plus utilisée en Grandes Cultures.

9.2.3 Pompe à membrane

Caractéristiques:

- Résiste bien aux liquides chargés
- ♦ semi volumétrique
- $\Phi P_{max} = 10 \text{ bars}$
- ♦ Débit idem 250 300L/min
- ♦ Nombre de cylindrés : 1 à 6


Il existe de pompes à piston à double effet

Ce dispositif permet d'aspirer et refouler des 2 côtés du piston

→ moins d'à coups

9.3 Pompes à mouvement rotatif

9.3.1 Pompe centrifuge

Il faut toujours de l'eau dans la pompe (et pas d'air) (sauf pour les centrifuges auto-amorçantes qui tolèrent la présence d'air)

Caractéristiques:

- ♦ Vitesse : 1500 tour/min (multiplicateur derrière la prise de force)
- ♦ Débit fort (jusqu'à 1000L/min)
- Pression faible (Pmax = 3 à 5 bars)
- ♦ Non-volumétrique

Il y a possibilité d'y ajouter un dispositif d'agitation et remplissage

Remarque : il existe des pompes à double turbines (la 1^{ère} turbine refoule dans la 2^{ème} sous une pression de 3 bars, la 2^{nde} augmente la pression à 6 bars)

→ Très bon marché

9.3.2 Autres pompes (abandonnées)

- ★ Pompes à rouleaux
 - → P Faible, usure importante
- ★ Pompes à engrenage
 - → D faible, utilisé pour des pulvérisations spéciales
- ★ Pompes à palette
 - → P faible, usure importante
- **★** Pompes Péristaltiques
 - → P faible, D faible

les pompes les plus ul lines en grandes Cultures

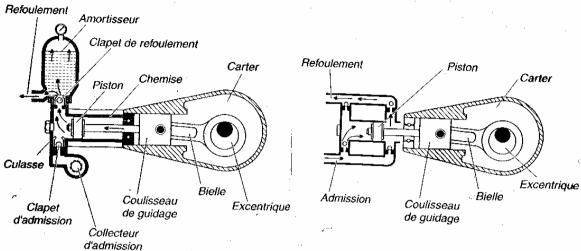


Fig. 196 - Principe d'une pompe à pistons à simple effet

Fig. 197 - Principe d'une pompe à pistons à double effet

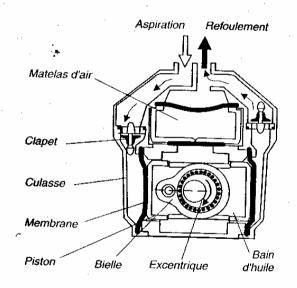


Fig. 200 - Pompe à pistons-membranes à deux éléments (d'après document Tecnoma)

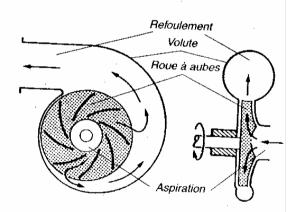


Fig. 205 - Principe d'une pompe centrifuge

DEC CENAGNET FORMATION