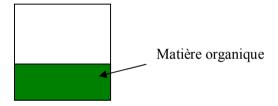
6 CHAPITRE 6: INTRODUCTION SUR LES PULVERISATEURS


6.1 Historique

6.1.1 Dates

- 1960 : Premiers traitements et engrais (capacité 300-400 litres avec tracteurs d'environ 30ch)
 - → 1 seul passage avec un herbicide
- 1965 : Apparition du DPA¹ mécanique
- 1980 : Premiers DPA électroniques
 - → Meilleur précision et répartition (Environ 75 l/ha)

6.1.2 Définitions

Pulvériser: diviser un liquide en fines gouttelettes et le répartir d'une manière aussi régulière que possible.

PC (produit commercial)

PC + eau = Bouillie

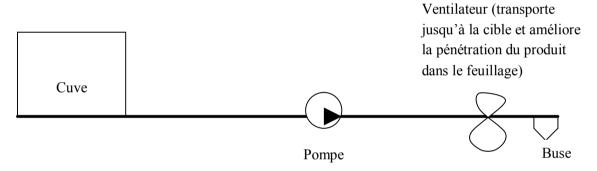
On peut rajouter à la bouillie des adjuvants, des huiles ou des mouillants.

6.1.3 Ennemis des cultures

Adventices -> herbicides Insectes -> Insecticides Champignons -> Fongicides Limaces -> Molluscicides

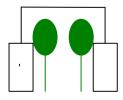
¹ DPA: Débit Proportionnel à l'Avancement

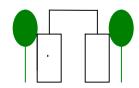
6.2 Différents types de pulvérisateurs


6.2.1 Pulvérisateur à jet projeté (Grandes Cultures)

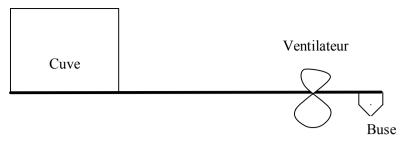
C'est la PRESSION qui assure la DIVISION et le TRANSPORT (de la buse à la cible)

Les traitements vont de 70 à 300 l/ha La pression est entre 2 et 5 bars.


6.2.2 Pulvérisateur à jet porté (arboriculture)


La PRESSION assure la DIVISION. La VENTILATEUR assure le TRANSPORT.

Les traitements vont de 600 à 2000 l/ha La pression est entre 25 et 30 bars.


6.2.3 Pulvérisateur pneumatique (Viticulture)

Tracteur enjambeur (ici 3 rangs)

Tracteur Vigneron Voie étroite

La VENTILATEUR assure la DIVISION et le TRANSPORT.

Les traitements vont de 100 à 200 l/ha

Peu ou pas de pression.

Pulvérisation très homogène.

TABLEAU RECAPITULATIF

Pulvérisateur	La DIVISION	Le	PRESSION:	Qté/ha
	est assurée par :	TRANSPORT		
		est assuré par :		
Jet Projeté	PRESSION	PRESSION	2 à 5 bars	70 à 300 l/ha
(Grandes cultures)				
Jet Porté	PRESSION	VENTILATEUR	25 à 30 bars	600 à 2000 l/ha
(Arboriculture)				
Pneumatique	VENTILATEUR	VENTILATEUR	Peu ou pas	100 à 200 l/ha
(Viticulture)				

6.2.4 Pulvérisateur centrifuge

6.2.4.1 A jet Porté (Grandes cultures)

25 à 40 l/ha.

6.2.4.2 A Jet Porté

5 l/ha

Le ventilateur est puissant.

6.2.5 Autres

6.2.5.1 Poudreuse

Epand de la fleur de soufre sur la rosée du matin.

S + H2O -> Fongicide

6.2.5.2 Micro-granulateur

Souvent associé à un semoir.

La quantité/ha peut aller de 5 à 30 kg/ha.

Les micro-granulateurs permettent d'épandre anti-limaces, insecticides directement dans les rayons de semi.

6.2.5.3 Humectation

On imbibe une corde ou une toile et agit par contact avec la plante.

6.2.5.4 Pulvérisation aérienne

- ULM
- Hélicoptère
- Avion

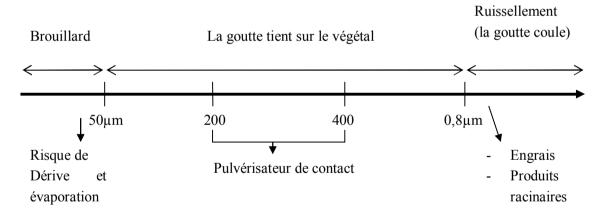
Avantages : traitements rapides, traitements de champs difficiles, voire impossibles d'accès. Inconvénients : faire appel à des pilotes professionnels car difficile à manipuler, donc c'est coûteux.

6.2.5.5 Désherbage thermique

Le désherbage thermique en coagulant les cellules (1 seconde à 80°C) Beaucoup utilisé pour le légumes bio, et la vigne bio.

6.2.5.6 Electrostatique, Electrodynamique

Création d'un champ magnétique sur la plante qui devient plus réceptive au produit.


6.3 Différents volumes de jet projeté (BCPC²)

En Angleterre, pour traiter il faut un permis.

Volume	De	A	Commentaires
HV (Haut Volume)	500 l/ha		
VM (Volume Moyen)	200 l/ha	500 l/ha	Appareil peu sophistiqué
VR (Volume Réduit)	100 l/ha	200 l/ha	Régulation élaborée
BV (Bas Volume)	50 l/ha	100 l/ha	DPA Electronique
TBV (Très Bas Volume)	5 l/ha	50 l/ha	Pulvérisateur centrifuge
UBV (Ultra Bas Volume)		5 l/ha	Electrostatique, électrodynamique

6.4 Importance de la taille des gouttes

6.4.1 Taille

6.4.2 Nombre d'impacts

C'est la pression qui fait varier le nombre d'impacts/cm².

+ il y a de pression + il y a d'impacts.

	Nombre d'impacts/cm ²	Pression
INSECTICIDES	20 à 30 I/m²	2 bars
HERBICIDES	30 à 50 I/cm ²	2 à 3 bars
FONGICIDES	50 à 70 I/cm ²	3 à 4 bars

Pour contrôler le nombre d'impacts/cm² on utilise du papier hydro sensible.

² British Crop Protection Council -> Bureau de la protection des cultures anglais

Exercice:

 $1\ goutte\ de\ 1mm\ de\ diamètre\ correspond\ à\ combien\ de\ gouttes\ de\ 0,1\ mm\ ?$

$$V_{\text{Sphère}} = 4/3 \prod R^3$$

R=D/2, donc
$$V_{Sphère} = 4/3 \prod (D/2)^3 = 4/3 \prod D^3/8 = (\prod D^3)/6$$

Nb = V/ v =
$$(\prod D^3/6) / (\prod d^3/6) = D^{3/} d^3 = (D/d)^3 = 10^3 = 1000$$
 gouttes

6.4.3 Exercice:

Soit 2 agriculteurs A et B qui ont le même problème sur 1 culture. Ils doivent traiter à 200 l/ha!

A	В	
200 l/Ha	80 l/ha	
Sur 10 gouttes : 3 de 900μ et 7 de 300 μ de	10 gouttes de 300 μ de diamètre	
diamètre		

Quel est le pourcentage d'efficacité en A? En B?

Pour B:

$$x = 40 \%$$

Pour A:

$$V_{\text{tot}} = 3 V_{900\mu} + 7 V_{300\mu}$$

Pourcentage d'efficacité = $7V_{300u} / V_{tot}$

$$7V_{300\mu} = 7 \text{ x } (\prod (3.10^{-1})^3) / 6 = 99.10^{-3} \text{ mm}^3$$

$$3V_{900u} = 3 \times (\prod (9.10^{-1})^3) / 6 = 1145.10^{-3} \text{ mm}^3$$

$$V_{tot} = 99.10^{-3} + 1145.10^{-3} = 1244.10^{-3} \text{ mm}^3$$

Pourcentage d'efficacité = $1145.10^{-3} / 1244.10^{-3} = \overline{7.9\%}$

Conclusion: 1 ou 2 grosses gouttes dans une pulvérisation peut être catastrophique, donc il faut faire attention à la taille des gouttes.

6.5 Les unités de pression

6.5.1 USI et théorème de Pascal

P = F / S

P: pression en Pascal (Pa)

F: En Newton

S : Surface en m²

$$1 \text{ bar} = 10^5 \text{ Pa}$$

 $P = \rho g h$

P: pression en Pa

ρ: masse volumique en kg/m³

g = 9.81

h: hauteur en m

Densité $d = \rho_{produit} / \rho_{eau}$

Quelques exemples:

Produit	Masse volumique ρ (en kg/m ³⁾	Densité d
Engrais Azoté	900	0,9
Azote	1333	1,33
Huile	900	0,9
Essence	760	0,76

6.5.2 Unités météo

1013 hPa = 76 cmHg (76 cm de mercure)

En effet : comme d=13,6

 $P = \rho g h = 13600 x 9.81 x 0.76 = 101300 Pa = 1013 hPa$

→ Pour traiter les conditions météo doivent être bonnes

6.5.3 Unités de Pulvérisation

1 bar = 10⁵ Pa et correspond à une pression de 1 kg sur 1cm²

$$-> 1 \text{ bar} = 1 \text{ kg/cm}^2$$

PSI: Pound Square Inch

1 pound = 453 g

1 Inch = 2.54 cm

Donc 1 PSI correspond à une pression de 0,453 g sur 6,25 cm². (2,54² cm²)

Exemple d'inscription sur un pneu Kléber (Français) :

175 70 R13

Maxi Load 475 kg 1047 LBS

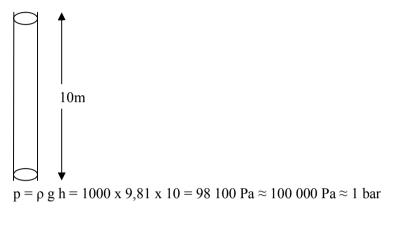
Maxi Press 350 hPa (3,5 bars) 50 PSI

1 bar = ? PSI

 $P = mg = 0,453 \times 9,81 = 4,44 \text{ N}$

 $1 \text{ PSI} = 4,44 / 6,45 = 0,689 \text{ N/cm}^2$

 $1 \text{m}^2 = 10\ 000 \text{m}^2$


1 PSI =6890 N/m² (= 6890 Pa)

$$1bar = x PSI$$

 $100 000 = x 6890$

$$x = 14,5$$
-> 1 bar = 14,5 PSI

6.5.4 Irrigation (mCE = mètre de colonne d'eau)

La pression peut être générée par une hauteur d'eau

 $10 \text{ mCE} \approx 1 \text{ bar}$

Remarque : Le diamètre n'intervient pas dans la formule